Speech Disfluencies in Simultaneous Interpretation*

Maria BAKTI
University of Szeged, Szeged / Eötvös Loránd University, Budapest

Abstract

This paper examines disfluencies in the output of trainee and professional simultaneous interpreters working from English (their B language) into Hungarian (their A language). Based on Gósy’s taxonomy (2004, 2005), a classification of error-type disfluencies (ETDs) in the output of simultaneous interpreters is carried out. The origin of error-type disfluencies can be linked to stages of the speech production process; the most frequently occurring error-type disfluencies in the target language output of trainee and professional simultaneous interpreters signal problems at the stages of lexical access and grammatical planning.

1. Introduction

Several approaches and research traditions exist within interpreting studies (Pöchhacker 2004). The complex task of Simultaneous Interpretation (SI) might be viewed as a psycholinguistic experiment designed to test how the processes of speech production, speech perception, translation and monitoring operate simultaneously (Klaudy 2004). In addition, the process of SI can also be seen as a special case of speech production in noise. The psycholinguistic approach to SI has been particularly influential during the early years of interpreting research (Barik 1972; 1973; Goldman-Eisler 1972). More recent psycholinguistic research on SI includes research on self-repair mechanisms in SI (Petite 2005), speech production in SI (de Bot 2000; Moser 1978; Moser-Mercer 2002), slips of speakers and their correction by interpreters (Van Besien and Meuleman 2004), and disfluencies in simultaneous interpreting (Tissi 2000).

This paper is concerned with speech disfluencies occurring in the target language output of simultaneous interpreters working from English (B) into Hungarian (A). This paper provides a summary of the results of two research projects; the research questions of the projects were the following:

* The author would like to thank the CETRA 2008 teaching staff and the anonymous referees for their useful comments, which substantially contributed to the final shape of this paper.

1. What are the most frequently occurring disfluencies in the output of trainee and professional interpreters?
2. What malfunction do these disfluencies signal in the speech production system?

Based on models of speech production, the origin of speech disfluencies can be linked to certain stages of the speech production system; an analysis of the disfluencies occurring in the output of simultaneous interpreters would help us to isolate stages of target language speech production that are most problematic during SI.

My paper is divided into four main parts. I begin by providing an overview of the psycholinguistic literature on speech production, including the definitions of slips of the tongue and speech disfluencies. In this part I also sketch out some of the features of speech production in noise. A review of the literature on slips and disfluencies occurring in the output of interpreters follows. The third part of the paper provides an analysis of disfluencies occurring in the output of trainee interpreters working from English into Hungarian. The fourth part of the paper offers an analysis of the disfluencies occurring in the target language output of professional interpreters.

2. Speech production and speech disfluencies

Speech errors are naturally occurring phenomena in spontaneous speech. They are performance errors, not competence errors (Celce-Murcia 1973: 198). In order to provide a better understanding of the topic under discussion, it is important to clarify the distinction between speech disfluencies and slips of the tongue.

2.1. Slips of the tongue and speech production

Boomer and Laver define slips of the tongue as follows: “a slip of the tongue is an involuntary deviation from the speaker’s current phonological, grammatical or lexical intention” (Boomer and Laver 1973: 123). Each author classifies speech errors or slips in a slightly different way (Garnham 1985: 206). Garnham uses the following classification: anticipation, perseveration, omission, omission (haplology), addition, exchange, substitution, substitution (malapropism), substitution (derivation error), blend (Garnham 1985: 208). Cohen, however, works with the categories of anticipation, perseveration and transposition (Cohen 1973: 90). Noteboom also
uses the above categories, and adds a further dimension to the classification by taking into consideration what happens to the units involved in the slip (omission, addition, substitution). He further distinguishes between phonemic and non-phonemic speech errors (Noteboom 1973). Celce-Murcia, when describing the Meringer corpus, refers to the following categories used by Meringer: blends/contaminations, spoonerisms, anticipations, perseverations and *Dissimilationen* or maskings (Celce-Murcia 1973). Garnham and his colleagues analyze slips in the London-Lund corpus using the categories of substitution, anticipation, exchange, omission, addition, perseveration, blend and ‘other’. Each category is further broken down according to what unit is involved in the slip (segment, syllable, word or phrase) (Garnham et al. 1981). Table 1 provides an overview of the taxonomies used in categorizing slips of the tongue.

<table>
<thead>
<tr>
<th>Author</th>
<th>Categories</th>
<th>Author</th>
<th>Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Celce-Murcia</td>
<td>Anticipation</td>
<td>Noteboom</td>
<td>Anticipation</td>
</tr>
<tr>
<td>(1973)</td>
<td>Perseveration</td>
<td>(1973)</td>
<td>Perseveration</td>
</tr>
<tr>
<td></td>
<td>Blend</td>
<td></td>
<td>Transposition</td>
</tr>
<tr>
<td></td>
<td>Spoonerism</td>
<td></td>
<td>Omission</td>
</tr>
<tr>
<td></td>
<td><em>Dissimilationen</em></td>
<td></td>
<td>Addition</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Substitution</td>
</tr>
<tr>
<td>Cohen (1973)</td>
<td>Anticipation</td>
<td>Garnham et al.</td>
<td>Anticipation</td>
</tr>
<tr>
<td></td>
<td>Perseveration</td>
<td>(1981)</td>
<td>Perseveration</td>
</tr>
<tr>
<td></td>
<td>Transposition</td>
<td></td>
<td>Omission</td>
</tr>
<tr>
<td></td>
<td>Omission</td>
<td></td>
<td>Addition</td>
</tr>
<tr>
<td></td>
<td>Addition</td>
<td></td>
<td>Exchange</td>
</tr>
<tr>
<td></td>
<td>Substitution</td>
<td></td>
<td>Blend</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>Garnham (1985)</td>
<td>Anticipation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Perseveration</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Omission</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Omission/</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Haplology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Addition</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Exchange</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Substitution</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Substitution</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(malapropism)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Substitution</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(derivation error)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Blend</td>
</tr>
</tbody>
</table>

Table 1. Taxonomies used to categorize slips of the tongue

Research on slips of the tongue has contributed to our better understanding of speech production. The first and most influential models of speech production are error-based models (Dell 1986; Fromkin 1973; Leveilt 1989; 1999; Shattuck-Hufnagel 1979). There seems to be agreement between the models on the four levels of speech production prior to articulation: the message level, the syntactic level, the morphemic level, and the phonemic level (Whitney 1998: 275). However, there are considerable differences concerning the precise workings of the system, in other words, differences concerning the nature of the links between the levels of speech production. Dell (1986) emphasizes spreading activation as a link between the levels of the speech production system; Shattuck-Hufnagel sees speech errors as evidence for
a serial ordering mechanism in sentence production (Shattuck-Hufnagel 1979), while Levelt’s modular model is based on the assumption that the speech production system is made up of separate modules, with only one-way connections between the levels (Levelt 1989; for an overview of the models see Kormos 2006). The focus of recent research has shifted from speech errors to reaction times (Roelofs 1997) with experiments designed to fine-tune the models of speech production (Turennout et al. 1998). Another important shift has been the integration of existing models of speech production. The sources of Roelofs’ WEAVER model of word-form encoding in speech are Dell’s assumption of word-form retrieval by spreading activation and Levelt’s assumption of on-line syllabification and syllabary access (Roelofs 1997: 250). Also, Levelt’s 1999 “blueprint for the speaker” accommodates spreading activation (Levelt 1999).

According to Levelt, the speech production system also includes the mental lexicon, knowledge of the outside world, and a syllabary (Levelt 1999). Self-monitoring is also a crucial part of the system – for an overview of speech monitoring models see Postma (2000). Research on speech errors is important to get a better understanding of speech production, as speech error regularities provide a valuable glimpse into the workings of the fluent sentence production mechanism, since the constraints they follow are presumably imposed by characteristics of the process by which normal, error-free speech is produced. (Shattuck–Hufnagel 1979: 295)

2.2. Speech disfluencies

Speech disfluencies are a much broader category than slips of the tongue. They are defined by Gósy as follows: “Speech disfluencies are generally defined as phenomena that interrupt the flow of speech and do not add propositional content to an utterance” (Gósy 2007: 93).

A possible taxonomy to deal with speech disfluencies is offered by Gósy (2004; 2005). The advantage of using her taxonomy is that it covers the widest possible range of disfluencies, and in this way helps to gain a better insight into the processes of speech production. She differentiates two major groups of speech disfluencies: (a) disfluencies rooted in uncertainty and (b) errors or error-type disfluencies (ETDs). This taxonomy describes the major categories of uncertainty-related speech disfluencies as: hesitations, fillers, repetition, restarts, lengthening and pauses within the word. Error-type disfluencies include the following
categories: Freudian slips, grammatical errors, contamination, false word activation, “tip of the tongue” (TOT), change, ordering problems and slips.

The reason for using Gósy’s taxonomy in this paper is that, in addition to slips of the tongue, this taxonomy includes a range of additional phenomena, thus allowing a more thorough analysis of speech production. Each type of disfluency can be linked to a certain stage of the speech production process (for details see Gósy 2005; Huszár 2005), from conceptual planning through grammatical encoding to articulatory planning. Based on the analysis of disfluencies occurring in speech, one can infer malfunctions at various stages of the speech production system.

Psycholinguistic research into speech production and speech disfluencies in noise has shown that under noisy conditions, speakers adapt to the changes in the noise level of the environment. This reaction to environmental noise is known as the Lombard sign. When speaking in noise, speakers change their voice level, pitch, frequency, and there is a change in the patterns of pauses, and articulation and speech rates (Castellanos, Benedí and Casacuberta 1996; Gósy 2007; Lane and Tranel 1971; Van Summers et al. 1988). In speech production in ambient noise, restarts and repetitions account for most speech disfluencies (Gósy 2007: 102).

Research on speech errors might yield results in fields other than spontaneous speech production, provided one accepts Cutler’s position: “… whereas causes of errors might differ across languages, across individuals, and across occasions, error mechanisms ought to be both speaker- and language universal” (Cutler 1981: 576).

3. Disfluencies in SI

In Interpreting Studies, research on slips and disfluencies includes the work of Petite (2005), who discusses repairs and self-monitoring in SI. However, the scope of her investigation goes beyond the repair of speech disfluencies to include post-articulatory appropriateness, error and other repairs (Petite 2005). Van Besien and Meuleman, on the other hand, examine errors and repairs of speakers and their effects on the process of SI (Van Besien and Meuleman 2004).

Speech disfluencies occurring in the output of simultaneous interpreters have received some attention in the Interpreting Studies research community. Pöchhacker examines the speeches in a three-day conference and their renderings from the perspective of slips and shifts occurring in the output of simultaneous interpreters (Pöchhacker 1995). The language
directions are English into German and German into English. The starting hypothesis is that the output of the speakers would be characterized by less slips and shifts than that of the interpreters. The interpreters’ output is influenced by the speed of delivery of the speakers, and also by the complexity of the interpreting task. This leads to the second hypothesis, according to which the interpreters’ output would be characterized by more slips and uncorrected slips. Pöchhacker works with the categories of corrected and uncorrected slips and structure shifts (false starts, lexical blends and syntactic blends). The results show that, with the exception of uncorrected slips, more slips and shifts are found in the output of interpreters than in the output of speakers. The proportion of false starts is high, irrespective of speakers or language direction. Pöchhacker sees this as a universal of speech production, and not as a sole characteristic of SI (Pöchhacker 1995: 82). There are more simple slips and false starts in the output of speakers, whereas in the output of interpreters, the most frequent occurrence is blends and structural blends.

Benedetta Tissi provides a descriptive analysis of silent pauses and disfluencies in SI. The central question of her paper is: To what extent do source text disfluencies affect comprehension and delivery in the target language? She also attempts to come up with an SI-specific taxonomy for disfluencies. Tissi also stresses the communicative value and the tactical use of disfluencies in the interpretations. She works with the following two major categories to describe disfluencies: silent pauses (the two subcategories being grammatical and/or communicative pause and non-grammatical pauses) and disfluencies. The latter include filled pauses (further broken down into vocalized hesitations and vowel and consonant lengthenings) and interruptions (further broken down into repeats, restructuring and false starts). She finds large individual variations, and states that no clear trends can be identified (Tissi 2000: 122) and that the influence of the source text is not as direct as one would assume. She finds that vowel and consonant lengthenings are much more numerous in the target texts, and false starts occur only in the target texts (Tissi 2000: 120). Tissi also notes the communicative, sometimes even strategic use of some non-fluencies by the interpreter (e.g. silent or filled pauses before a correction), lengthenings of the tonic vowel, and retrospective repeats (Tissi 2000: 121).

Mead examines the control of pauses by trainee interpreters in their A and B languages in consecutive interpretation (Mead 2000).

Using Gósy’s taxonomy, a series of papers were published on speech disfluencies in the output of simultaneous interpreters working into Hungarian; Bakti examines interference from the source language in the output of simultaneous interpreters (Bakti 2007a), and
investigates speech disfluencies in the light of retrospective interviews (Bakti 2007b). Kusztor and Bakti investigate speech disfluencies in the Pöchhacker-corpus (Kusztor and Bakti 2007).

The present paper focuses on error type disfluencies (ETDs). This categorization is more detailed than the one used by Pöchhacker (1995), and complements the investigations of Tissi (2000), thus providing a more detailed picture of target language speech production during SI.

4. Methods, materials and subjects

Project 1 looked at ETDs in the output of seven trainee interpreters (5 female, 2 male). They were invited to interpret a 12-minute-long English text into Hungarian. The text was read out in English and was part of one of their interpretation classes. The trainees saw the speaker delivering the source language speech. The target language output of the trainees was recorded, resulting in seven 12-minute target language texts. The target language texts were transcribed and the errors categorized on the basis of Gósy’s taxonomy (2004).

In Project 2 the text from project 1 was played to three practicing interpreters (1 female, 2 males). The interpreters participating in the project had been working as freelance conference interpreters for several years; their A language is Hungarian, their B language is English. The output of the interpreters was recorded, resulting in three 12-minute target language texts. The target language texts were transcribed, and errors were categorized on the basis of Gósy’s taxonomy (2004).

In the case of both projects, deviations from standard practice should be noted. First, the interpreting task was decontextualized. The interpretations were recorded in a laboratory, with no audience present. The interpreters worked on their own, so they could not rely on the help of their boothmates in case of any problems. The interpreters were not paid for the interpretation service. These factors would inevitably contribute to the quality of interpretation.
5. Results

5.1. ETDs in the output of trainee interpreters

Table 2 illustrates the distribution of ETDs in the output of trainee interpreters (Project 1). The most frequently occurring ETD was restarts (26%), followed by grammatical errors (21.5%), and false word activation (12.7%) ranks third.

<table>
<thead>
<tr>
<th>ETD</th>
<th>Project 1 (Trainee interpreters) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freudian slips</td>
<td>1.6</td>
</tr>
<tr>
<td><strong>Grammatical errors</strong></td>
<td><strong>21.5</strong></td>
</tr>
<tr>
<td>Contamination</td>
<td>0.5</td>
</tr>
<tr>
<td><strong>False word activation</strong></td>
<td><strong>12.7</strong></td>
</tr>
<tr>
<td>TOT</td>
<td>5.5</td>
</tr>
<tr>
<td>Change</td>
<td>5</td>
</tr>
<tr>
<td><strong>Restart</strong></td>
<td><strong>26.5</strong></td>
</tr>
<tr>
<td>Perseveration</td>
<td>6</td>
</tr>
<tr>
<td>Anticipation</td>
<td>5.5</td>
</tr>
<tr>
<td>Metathesis</td>
<td>1.6</td>
</tr>
<tr>
<td>Simple slips</td>
<td>10</td>
</tr>
<tr>
<td>Multiple cause</td>
<td>3.4</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>100</strong></td>
</tr>
</tbody>
</table>

Table 2. Distribution of ETDs in the output of trainee interpreters

Restarts signal co-ordination problems between lexical access and articulatory planning. This was the most frequently occurring ETD in the output of trainee interpreters. Within restarts, distinct subgroups could be identified in the ETDs occurring in the output of trainee interpreters, based on the size of the units involved in the slip.

In one subgroup, the activated words were restarted after the first phoneme of the word was uttered:

(1) A v_világháború alatt elfoglalták a raktárkészletek.

‘During the world war they confiscated the supplies.’

In other cases, the restart occurs after the first syllable of the activated word is uttered:

(2) A Tisza melletti ö gyár ki_kiváló helyszínt biztosít.

‘The factory by the river Tisza provides an excellent location.’
A further category is illustrated in (3), where the stem of the word is uttered, then an extra word is inserted, and the original word is restarted.

(3) ugyanakkor Pick Jenő informálisan még gyakorolhatta a vezeté _a cég vezetését
at the same time Pick Jenő informally still exercise COULD PAST leadership, the company leadership
‘At the same time, Pick Jenő could informally act as the company leader.’

Grammatical errors signal problems in morphological and syntactical planning. In the output of trainee interpreters, one of the most frequent grammatical errors was the use of the wrong noun endings:

(4) amely megpróbál a munkások és a gyár javát_ra dolgozni
which tries the workers and the factory benefit ACC_ DAT for work INF
‘…which tries to work for the benefit of the workers and the factory…’

In (4) the accusative ending is used first, then it is changed to the dative. It would have been possible to continue with the accusative, however, it would have required the change of the ending of the verb try, and thus the rephrasing of a much longer unit. It was probably easier for the trainee to change the ending of the noun, and come up with an alternative construction.

Another problem area in the field of grammatical errors is related to the use of the definite article. The Hungarian language has two definite articles: a for noun phrases starting with a consonant, and az for noun phrases starting with a vowel. Example (5) shows how the trainee uses az with a noun starting with a consonant:

(5) termékeket lefoglalta az hadsereg
products ACC seized the army
‘The army seized the products.’

Example (6) shows a combination of problems illustrated in examples (4) and (5). First there is a correction of the verb ending from singular to plural, then the correction of the definite article to match the word-initial consonant of részvény.

(6) nagy érdeklődést mutatott _mutattak az a részvény iránt
great interestACC showedIT showedTHEY the the share for
‘They showed great interest in the share.’
False word activation and false starts ranked third among the ETDs in the output of trainee interpreters. False word activations and false starts signal problems at the stage of lexical access in speech production (Gósy 2005).

Example (7) is an example of false word activation, where the trainee interpreter activated the adjective high instead of warm.

(7) amely miatt már magas_ már melegebb körülmények között is
which because already high already warmer conditions among too
‘…because of which {production was possible} in higher in warmer conditions.’

5.2. ETDs in the output of professional interpreters (Project 2)

Project 2 analyzed ETDs occurring in the output of professional interpreters. Table 3 illustrates the distribution of ETDs in the target language output of professional interpreters:

<table>
<thead>
<tr>
<th>ETD</th>
<th>Project 2 (professional interpreters) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grammatical errors</td>
<td>25.5</td>
</tr>
<tr>
<td>False word activation</td>
<td>11</td>
</tr>
<tr>
<td>TOT</td>
<td>3</td>
</tr>
<tr>
<td>Change</td>
<td>4.8</td>
</tr>
<tr>
<td><strong>Restart</strong></td>
<td><strong>36.5</strong></td>
</tr>
<tr>
<td>Anticipation</td>
<td>1.6</td>
</tr>
<tr>
<td>Metathesis</td>
<td>1.6</td>
</tr>
<tr>
<td>Simple slips</td>
<td>8</td>
</tr>
<tr>
<td>Multiple cause</td>
<td>8</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>100</strong></td>
</tr>
</tbody>
</table>

Table 3. Distribution of ETDs in the output of professional interpreters (Project 2)

Similarly to trainee interpreters, in the output of professional interpreters the most frequently occurring ETDs are restarts (36.5%), grammatical errors (25.5%), and false word activation (11%).

In the case of restarts, similar patterns can be observed in the output of professionals and trainees. Example (8) shows a restart following the utterance of the first phoneme of the target word:

(8) novemberben a Pick r_részvényeket
NovemberIN the Pick shares ACC
‘In November the Pick shares…’
Example (9) is a restart following the utterance of the stem of the noun üzem, the Hungarian word for operation:

(9) más gépek is üzem_üzemben voltak
other machines too operationIN were THEY
‘Other machines were in operation, too.’

The second most frequently occurring ETD in the target language output of professional interpreters is grammatical errors. Similarly to trainee interpreters, some of the grammatical errors resulted from the incorrect use of the definite article.

In example (10) the definite article az is used with a noun phrase starting with a consonant:

(10) az legnagyobb munkaadó és adófizető
the greatest employer and taxpayer

Example (11) illustrates the incorrect use of the plural; whereas in English there is a plural form for the noun export, in Hungarian only the singular form is used. Still, in the Hungarian target language text, the interpreter used the noun export in the plural:

(11) a szalámi exportok több mint hétezer tonnát tettek ki évente
the salami exports more than seven thousand tons amounted out annually
‘The salami exports amounted to more than seven thousand tons annually.’

Although false word activation ranks third, it is important to note that it was present in the output of only one of the professional interpreters. In example (12) the interpreter seems to have difficulties accessing the word national; instead, the adjective international is activated and then corrected to national.

(12) a nemzetköz a a né a nemzeti mezőgazdasági kereskedelmi kiállításon
the internat_ UNFINISHED the the na the national agricultural trade fair
‘…on the international_ national agricultural trade fair…’
6. Discussion

Findings from the analysis of speech disfluencies allow us insights into the ‘black box’ of the cognitive processes of interpreting. The analysis signals problems at the stages of lexical access and grammatical planning during speech production in SI.

The results of the two projects carried out in interpreting into Hungarian seem to support the findings in the previous literature on speech disfluencies and slips in SI. The high incidence of false word activation / false starts was also noted by Pöchhacker, who sees it as a universal of speech production, and not as a sole characteristic of SI (Pöchhacker 1995: 82).

The relatively high occurrence of restarts could be explained by the circumstances of SI, that is, the interpreters work and listen at the same time. In other words, interpreters work in noise. Psycholinguistic research into speech production and speech disfluencies in noise has shown that under noisy conditions, restarts and repetitions account for most speech disfluencies (Gósy 2007: 102). Gósy’s data suggest that the speakers use alternative strategies for speech production in noisy environments. According to Gósy, “the speakers restart the words and repeat them when there is a mismatch between planning and execution in order to save their planning mechanism from intruding (disturbing) noise” (Gósy 2007:102).

The suspected reason behind these similarities could be the need to divide attention in both SI and in noisy environments. Research has indicated that in noisy environments the frequency of the following disfluencies increases in the output of speakers: restarts, lengthenings, and repeats. The projects discussed above show the high proportion of restarts (this paper does not consider lengthenings and repeats). Tissi, looking at her categories of slips, found a frequent occurrence of lengthenings and repeats in the output of simultaneous interpreters.

The approach to SI from the perspective of noise / division of attention might be further tested, for instance with the examination of disfluencies occurring in the output of sight translation and shadowing.

Another frequently occurring ETD in the output of simultaneous interpreters is grammatical errors. A possible explanation of their frequent occurrence in interpreted texts might be found in the differences of morphology and syntax between the source and the target language. Another suspected reason might be found in the length of the ear-voice-span (EVS), which is the time lag between the source language speech and the interpreter’s output.

Research also indicates that these ETDs are not language-pair specific, as similar results were yielded by the analysis of the Pöchhacker corpus using Gósy’s taxonomy.
(Kusztor and Bakti 2007, English version forthcoming). There, both in the English and the German target language texts examined, restarts and grammatical errors were the most frequently occurring ETDs.

When contrasted with disfluencies occurring in spontaneous Hungarian speech, it seems that the most frequently occurring categories are the same in spontaneous speech as in SI. However, precise comparisons are difficult to make, as each study uses a slightly different classification, sometimes including pauses or hesitations under the heading ETDs. This makes comparison of the results difficult; however, some tendencies can be observed. Gósy examines a corpus of 15,000 words from 18 speakers. In the corpus, the most frequent ETDs are lengthenings (25%), grammatical errors (21%), restarts (21%), and false starts (10%) (Gósy 2005: 109).

Horváth examines disfluencies in dialogues and narratives. In the narratives the most frequent disfluencies are lengthenings, grammatical errors and restarts, followed by false starts. As for dialogues, the results show that the most frequent types of disfluencies are changes, lengthenings and pauses within the word (Horváth 2004).

Szabó compared ETDs in the output of a group of people chatting and playing a language game. In her corpus, the most frequently occurring disfluencies in spontaneous speech are “Tip of the tongue”, followed by repeats and restarts. False word activation ranks fourth. As for the language game, the most frequently occurring disfluencies are hesitations, restructuring and restarts (Szabó 2004).

7. Conclusion

Restarts and grammatical errors are the most frequently occurring ETDs in the examined corpus of simultaneous interpreters working from English into Hungarian. These ETDs signal problems with morphological and syntactic planning and co-ordination between lexical access and articulatory planning. Similar tendencies can be traced in spontaneous Hungarian speech, but there are difficulties in comparing the data of the present paper with the data presented in other studies on spontaneous Hungarian speech. However, it seems that grammatical errors and restarts are occurring frequently in spontaneous speech as well, while the incidence of restarts in SI is more characteristic. A possible explanation of restarts occurring in the output of simultaneous interpreters might be explained through the environment in which interpreters
work, while grammatical errors might be linked to the availability of mental energy for the task (Gile 1995) and the length of the EVS.

It is important to note the limitations of the present research, as its findings are based on the examination of a relatively small sample, and the findings should be tested against larger corpora.

References


**About the author**

Mária BAKTI studied English and Geography at the University of Szeged, Hungary. She is an Assistant Professor at the Department of Modern Languages and Cultures at the Faculty of Education of the University of Szeged. Presently, she teaches courses on translation and interpretation from English into Hungarian. She is also working on a doctoral dissertation on speech production in Simultaneous Interpretation at the Eötvös Loránd University, Budapest, Hungary. She has worked as a freelance conference interpreter since 2001, and has been an ACI (Auxiliary Conference Interpreter) at the European Parliament since 2005.

Address:  SZTE JGYPK, Modern Nyelv és Kultúrák Tanszék, Szeged, Hattyas sor 10. H-6725
E-mail:  bakti@jgypk.u-szeged.hu